Knockdown of the Non-canonical Wnt Gene Prickle2 Leads to Cerebellar Purkinje Cell Abnormalities While Cerebellar-Mediated Behaviors Remain Intact

Cerebellum. 2024 Oct;23(5):1741-1753. doi: 10.1007/s12311-023-01648-9. Epub 2024 Jan 2.

Abstract

Autism spectrum disorders (ASD) involve brain wide abnormalities that contribute to a constellation of symptoms including behavioral inflexibility, cognitive dysfunction, learning impairments, altered social interactions, and perceptive time difficulties. Although a single genetic variation does not cause ASD, genetic variations such as one involving a non-canonical Wnt signaling gene, Prickle2, has been found in individuals with ASD. Previous work looking into phenotypes of Prickle2 knock-out (Prickle2-/-) and heterozygous mice (Prickle2-/+) suggest patterns of behavior similar to individuals with ASD including altered social interaction and behavioral inflexibility. Growing evidence implicates the cerebellum in ASD. As Prickle2 is expressed in the cerebellum, this animal model presents a unique opportunity to investigate the cerebellar contribution to autism-like phenotypes. Here, we explore cerebellar structural and physiological abnormalities in animals with Prickle2 knockdown using immunohistochemistry, whole-cell patch clamp electrophysiology, and several cerebellar-associated motor and timing tasks, including interval timing and eyeblink conditioning. Histologically, Prickle2-/- mice have significantly more empty spaces or gaps between Purkinje cells in the posterior lobules and a decreased propensity for Purkinje cells to fire action potentials. These structural cerebellar abnormalities did not impair cerebellar-associated behaviors as eyeblink conditioning and interval timing remained intact. Therefore, although Prickle-/- mice show classic phenotypes of ASD, they do not recapitulate the involvement of the adult cerebellum and may not represent the pathophysiological heterogeneity of the disorder.

Keywords: Autism spectrum disorders; Cerebellum; Cognition; Purkinje cells; Wnt signaling.

MeSH terms

  • Animals
  • Behavior, Animal / physiology
  • Cerebellum* / metabolism
  • Cerebellum* / pathology
  • Disease Models, Animal
  • Gene Knockdown Techniques
  • LIM Domain Proteins* / deficiency
  • LIM Domain Proteins* / genetics
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Purkinje Cells* / metabolism
  • Purkinje Cells* / pathology

Substances

  • LIM Domain Proteins