Background and objectives: Patterns of electrical activity in the brain (EEG) during sleep are sensitive to various health conditions even at subclinical stages. The objective of this study was to estimate sleep EEG-predicted incidence of future neurologic, cardiovascular, psychiatric, and mortality outcomes.
Methods: This is a retrospective cohort study with 2 data sets. The Massachusetts General Hospital (MGH) sleep data set is a clinic-based cohort, used for model development. The Sleep Heart Health Study (SHHS) is a community-based cohort, used as the external validation cohort. Exposure is good, average, or poor sleep defined by quartiles of sleep EEG-predicted risk. The outcomes include ischemic stroke, intracranial hemorrhage, mild cognitive impairment, dementia, atrial fibrillation, myocardial infarction, type 2 diabetes, hypertension, bipolar disorder, depression, and mortality. Diagnoses were based on diagnosis codes, brain imaging reports, medications, cognitive scores, and hospital records. We used the Cox survival model with death as the competing risk.
Results: There were 8673 participants from MGH and 5650 from SHHS. For all outcomes, the model-predicted 10-year risk was within the 95% confidence interval of the ground truth, indicating good prediction performance. When comparing participants with poor, average, and good sleep, except for atrial fibrillation, all other 10-year risk ratios were significant. The model-predicted 10-year risk ratio closely matched the observed event rate in the external validation cohort.
Discussion: The incidence of health outcomes can be predicted by brain activity during sleep. The findings strengthen the concept of sleep as an accessible biological window into unfavorable brain and general health outcomes.
© 2023 American Academy of Neurology.