Background: Jamaican soil is abundant in heavy metals including mercury (Hg). Due to availability and ease of access, fish is a traditional dietary component in Jamaica and a significant source of Hg exposure. Mercury is a xenobiotic and known neuro-toxicant that affects children's neurodevelopment. Human glutathione S-transferase (GST) genes, including GSTT1, GSTM1, and GSTP1, affect Hg conjugation and elimination mechanisms.
Methods: In this exposure assessment study we used data from 375 typically developing (TD) 2-8-year-old Jamaican children to explore the association between environmental Hg exposure, GST genes, and their interaction effects on blood Hg concentrations (BHgCs). We used multivariable general linear models (GLMs).
Results: We identified the child's age, consumption of saltwater fish, canned fish (sardine, mackerel), string beans, grain, and starches (pasta, macaroni, noodles) as the environmental factors significantly associated with BHgCs (all P < 0.05). A significant interaction between consumption of canned fish (sardine, mackerel) and GSTP1 in relation to BHgC using either a co-dominant or recessive genetic model (overall interaction P = 0.01 and P < 0.01, respectively) indicated that consumption of canned fish (sardine, mackerel) was significantly associated with higher mean BHgC only among children with the GSTP1 Ile105Val, Ile/Ile [Ratio of mean Hg (95% CI) = 1.59 (1.09, 2.32), P = 0.02] and Ile/Val [Ratio of mean Hg (95% CI) = 1.46 (1.12, 1.91), P = 0.01] genotypes.
Conclusions: Since this is the first study from Jamaica to report these findings, replication in other populations is recommended.
Keywords: Blood Hg concentrations; Effect modifier; Fish and seafood consumption; Glutathione S-transferase (GST) genes; Interaction; Jamaica.
© 2023. The Author(s).