A decomposition Mueller matrix method is proposed for detection of miRNA and enhanced by using a surface plasmon resonance (SPR). In the proposed approach, a Mueller matrix decomposition method is employed to extract the linear birefringence (LB) and circular dichroism (CD) properties of the miRNA sample. The accuracy of the LB and CD measurements is enhanced through the use of a high-resolution antimonene-based SPR prism coupler with DNA-linked gold nanoparticles (AuNPs). The feasibility of the proposed method is demonstrated by measuring the LB orientation angle (α) and CD property (R) of two miRNA aqueous solutions (hsa-miR-125-5p and hsa-miR-21-5p) over the concentration range of 0∼1000 fM in both cases. The results show that, for both samples, α and R vary linearly with the change in the miRNA concentration. Furthermore, the values of α and R obtained for the two samples are quantifiably different, and hence the selectivity of the proposed SPR sensor is confirmed. Overall, the results highlight the potential of the proposed sensor as a valuable tool for miRNA detection with prospective applications in cancer diagnosis.
Keywords: Antimonene; AuNPs; Decomposition Mueller matrix; Surface plasmon resonance; miRNA.
Copyright © 2024 Elsevier B.V. All rights reserved.