RET is a receptor tyrosine kinase that plays an important role in the development of neurons and kidneys. The gene encoding the rearranged-during-transfection (RET) receptor tyrosine kinase was first discovered in the 1980s. Activating RET mutations and rearrangements have since been identified as actionable drivers of oncogenesis in numerous cancer types and are most prevalent in thyroid and non-small-cell lung cancer. Following the modest success of repurposed RET-active multikinase inhibitors, the first selective RET inhibitors (SRIs), selpercatinib and pralsetinib, received regulatory approval in 2020. Now, thousands of patients with RET-altered cancers have benefited from first-generation SRIs, with impressive deep and durable responses. However, following prolonged treatment with these SRIs, a number of acquired on-target resistance mutations have been identified together with other non-RET-dependent resistance mechanisms. Today, the focus is on how we can further evolve and improve the treatment of RET-altered tumors with next-generation SRIs, and a number of candidate drugs are in development. The ideal next-generation SRIs will be active against on-target acquired resistance alterations, including those that emerge in the CNS, and will have improved safety and tolerability relative to first-generation SRIs. In this review, we will provide an update on these candidates and their potential to meet the unmet clinical need for patients who progress on first-generation SRIs.
Keywords: RET fusions; RET mutations; next-generation selective RET inhibitor (SRI); non-small-cell lung cancer (NSCLC); pralsetinib; selpercatinib; thyroid cancer.