Combining Biomarkers for the Diagnosis of Metastatic Melanoma

J Clin Med. 2023 Dec 28;13(1):174. doi: 10.3390/jcm13010174.

Abstract

The early detection of melanoma relapse can improve patient survival; thus, there is a great need for easily accessible biomarkers that facilitate the diagnosis of metastatic disease. We investigated the diagnostic effect of blood biomarkers such as lactate dehydrogenase (LDH), S100B, and osteopontin in the detection of metastases. Clinical data and peripheral blood samples of 206 melanoma patients were collected (no metastasis, N = 120; metastasis, N = 86). The discriminative power of blood biomarkers, patient demographics, and clinicopathological parameters of primary melanomas were evaluated using univariate and multivariate logistic regression models and receiver operating characteristic (ROC) analysis to determine the area under the curve (AUC). Plasma osteopontin levels showed a significant and independent effect on the probability of metastasis, similar to serum S100B levels. In addition, the location of the primary tumor on the lower extremities and the American Joint Committee on Cancer (AJCC) categories pT2b-3a, pT3b-4a, and pT4b were associated with the diagnosis of metastasis. Importantly, the combination of the three blood biomarkers and primary tumor localization and AJCC pT category yielded excellent discrimination (AUC: training set: 0.803; validation set: 0.822). In conclusion, plasma osteopontin can be classified as a melanoma biomarker; moreover, by combining clinicopathological prognostic variables, the diagnostic effect of blood biomarkers in the detection of metastatic melanoma can be improved.

Keywords: S100B; metastatic melanoma; osteopontin.