Prospects for daily online adaptive radiotherapy for cervical cancer: Auto-contouring evaluation and dosimetric outcomes

Radiat Oncol. 2024 Jan 12;19(1):6. doi: 10.1186/s13014-024-02398-6.

Abstract

Background: Training senior radiation therapists as "adapters" to manage influencers and target editing is critical in daily online adaptive radiotherapy (oART) for cervical cancer. The purpose of this study was to evaluate the accuracy and dosimetric outcomes of automatic contouring and identify the key areas for modification.

Methods: A total of 125 oART fractions from five postoperative cervical cancer patients and 140 oART fractions from five uterine cervical cancer patients treated with daily iCBCT-guided oART were enrolled in this prospective study. The same adaptive treatments were replanned using the Ethos automatic contours workflow without manual contouring edits. The clinical target volume (CTV) was subdivided into several separate regions, and the average surface distance dice (ASD), centroid deviation, dice similarity coefficient (DSC), and 95% Hausdorff distance (95% HD) were used to evaluate contouring for the above portions. Dosimetric results from automatic oART plans were compared to supervised oART plans to evaluate target volumes and organs at risk (OARs) dose changes.

Results: Overall, the paired CTV had high overlap rates, with an average DSC value greater than 0.75. The uterus had the largest consistency differences, with ASD, centroid deviation, and 95% HD being 2.67 ± 1.79 mm, 17.17 ± 12 mm, and 10.45 ± 5.68 mm, respectively. The consistency differences of the lower nodal CTVleft and nodal CTVright were relatively large, with ASD, centroid deviation, and 95% HD being 0.59 ± 0.53 mm, 3.6 ± 2.67 mm, and 5.41 ± 4.08 mm, and 0.59 ± 0.51 mm, 3.6 ± 2.54 mm, and 4.7 ± 1.57 mm, respectively. The automatic online-adapted plan met the clinical requirements of dosimetric coverage for the target volume and improved the OAR dosimetry.

Conclusions: The accuracy of automatic contouring from the Ethos adaptive platform is considered clinically acceptable for cervical cancer, and the uterus, upper vaginal cuff, and lower nodal CTV are the areas that need to be focused on in training.

Keywords: Auto-contouring; Cervical neoplasm; Cone-beam CT; Online adaptive radiotherapy.

MeSH terms

  • Dose Fractionation, Radiation
  • Female
  • Humans
  • Organs at Risk
  • Prospective Studies
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods
  • Uterine Cervical Neoplasms* / radiotherapy