Protein thermodynamics is intimately tied to biological function and can enable processes such as signal transduction, enzyme catalysis, and molecular recognition. The relative free energies of conformations that contribute to these functional equilibria evolved for the physiology of the organism. Despite the importance of these equilibria for understanding biological function and developing treatments for disease, computational and experimental methods capable of quantifying the energetic determinants of these equilibria are limited to systems of modest size. Recently, it has been demonstrated that the artificial intelligence system AlphaFold2 can be manipulated to produce structurally valid protein conformational ensembles. Here, we extend these studies and explore the extent to which AlphaFold2 contact distance distributions can approximate projections of the conformational Boltzmann distributions. For this purpose, we examine the joint probability distributions of inter-residue contact distances along functionally relevant collective variables of several protein systems. Our studies suggest that AlphaFold2 normalized contact distance distributions can correlate with conformation probabilities obtained with other methods but that they suffer from peak broadening. We also find that the AlphaFold2 contact distance distributions can be sensitive to point mutations. Overall, we anticipate that our findings will be valuable as the community seeks to model the thermodynamics of conformational changes in large biomolecular systems.