[Effects of Polystyrene Microplastics Combined with Cadmium Contamination on Soil Physicochemical Properties and Physiological Ecology of Lactuca sativa]

Huan Jing Ke Xue. 2024 Jan 8;45(1):470-479. doi: 10.13227/j.hjkx.202302002.
[Article in Chinese]

Abstract

Contaminants such as microplastics (MPs) and heavy metals are commonly found in soils, both of which are extremely difficult to degrade and can easily form compound contamination, altering the physicochemical properties of the soil and thus potentially changing the growth and physiological and ecological characteristics of plants. In order to study the effects of the combined contamination of soil MPs and heavy metals on soil properties and plant growth, polystyrene microplastics (PS-MPs) with a particle size of 3 μm and the heavy metal cadmium were selected in the study. The changes in the physicochemical properties of soil and their effects on lettuce (Lactuca sativa) seed germination and seedling growth were studied at various exposure concentrations of PS-MPs (0, 10, 50, 100, 200, and 400 mg·kg-1) and combined with different Cd contamination concentrations (0, 1.2, and 6.0 mg·kg-1), respectively. The results showed that soil organic matter (SOM), available phosphorus (AP), alkali-hydrolysable nitrogen (AHN), and available kalium (AK) showed significant decreases as the intensity of PS-MPs combined with Cd contamination increased. Simultaneously, PS-MPs combined with Cd contamination also significantly reduced the germination rate of lettuce seeds, but low concentrations of PS-MPs slowed down the effect of Cd (6.0 mg·kg-1) contamination on lettuce seeds, and high concentrations of PS-MPs enhanced the effect of Cd (6.0 mg·kg-1). The fresh weight, dry weight, and plant height of lettuce seedlings showed an increasing and then decreasing trend with increasing exposure to PS-MPs. Chlorophyll content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) showed a decreasing trend, whereas malondialdehyde (MDA) content showed an overall increasing trend under different Cd concentrations. The main physicochemical indicators of the soil were negatively correlated with MDA of lettuce seedlings, whereas other indicators of the seedlings were positively correlated. The combined contamination of PS-MPs and Cd could affect the germination of plant seeds and the physiological and ecological characteristics of seedlings by changing the physicochemical properties of the soil. Both exposure to single PS-MPs contaminants and the combination of PS-MPs with Cd inhibited the germination of lettuce seeds and affected the physiological activities of their seedlings, and the inhibition was significantly increased with increasing exposure. Low exposure to PS-MPs or the combination of PS-MPs with Cd contamination exhibited a promotive effect on lettuce seedling growth. High exposure to PS-MPs combined with Cd contamination exhibited significant ecological effects on lettuce seedlings, and high exposure to PS-MPs exacerbated the ecotoxicological effects of Cd contaminants on lettuce seedlings, and PS-MPs and Cd exhibited synergistic effects. The results can provide some reference for assessing the ecological effects of MPs and heavy metal pollution in soil-plant systems.

Keywords: antioxidant enzymes; complex contamination; growth; heavy metals; lettuce; microplastics(MPs); soil.

Publication types

  • English Abstract

MeSH terms

  • Cadmium / metabolism
  • Cadmium / toxicity
  • Lactuca
  • Metals, Heavy* / metabolism
  • Microplastics
  • Plastics
  • Polystyrenes
  • Seedlings
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Cadmium
  • Microplastics
  • Plastics
  • Polystyrenes
  • Soil
  • Metals, Heavy
  • Soil Pollutants