Regulatory RNAs, as well as many RNA families, contain chemically modified nucleotides, including pseudouridines (ψ). To map nucleotide modifications, approaches based on enzymatic digestion of RNA followed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis were implemented several years ago. However, detection of ψ by mass spectrometry (MS) is challenging as ψ exhibits the same mass as uridine. Thus, a chemical labeling strategy using acrylonitrile was developed to detect this mass-silent modification. Acrylonitrile reacts specifically to ψ to form 1-cyanoethylpseudouridine (Ceψ), resulting in a mass shift of ψ detectable by MS. Here, a protocol detailing the steps from the purification of RNA by polyacrylamide gel electrophoresis, including in-gel labeling of ψ, to MS data interpretation to map ψ and other modifications is proposed. To demonstrate its efficiency, the protocol was applied to bacterial regulatory RNAs from E. coli: 6S RNA and transfer-messenger RNA (tmRNA, also known as 10Sa RNA). Moreover, ribonuclease P (RNase P) was also mapped using this approach. This method enabled the detection of several ψ at single nucleotide resolution.
Keywords: Modifications mapping; Pseudouridine; nanoLC-MS/MS.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.