This Schiff base chemosensor (SNN) detected dual ions, Al3+ and Zn2+ ions selectively. Fluorescence spectrum investigations showed that Al3+ ions increased fluorescence intensity, notably at 493 nm. Introducing Zn2+ ions caused a significant blue shift of roughly ∼65 nm at a wavelength of 434 nm, resulting in a notable change in fluorescence intensity. When binding Al3+/Zn2+ ions, the SNN receptor uses three methods. Inhibition of photoinduced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), and restriction of CN isomerization. The jobs plot method found that SNN + Al3+ and SNN + Zn2+ complexations had a 1:1 stoichiometry. DFT, LC-HRMS, and 1H NMR titration confirm this conclusion. The probe SNN's limit of detection (LOD) for Al3+/Zn2+ ions was 3.99 nM and 1.33 nM. Latent fingerprint (LFP), food samples, pharmaceutical products, and E. coli pathogen bio-imaging have all used the SNN probe to identify Al3+ and Zn2+ ions.
Keywords: Al(3+)/Zn(2+); Bio-imaging; Food/pharmaceutical samples; Latent fingerprint; PET/ESIPT.
Copyright © 2024 Elsevier Ltd. All rights reserved.