Occurrence and Dietary Exposure of 3-MCPD Esters and Glycidyl Esters in Domestically and Commercially Prepared Food in Singapore

Foods. 2023 Nov 30;12(23):4331. doi: 10.3390/foods12234331.

Abstract

This study investigated the prevalence and occurrence of 3-monochloropropanediol esters (3-MCPDEs) and glycidyl esters (GEs) in domestically and commercially prepared food in Singapore and assessed the total dietary exposure for the Singaporean population. Minimal impact on the formation of 3-MCPDEs and GEs was observed from the domestic cooking methods commonly practiced in Singapore such as deep frying and stir frying. The estimated total dietary exposure to 3-MCPDEs for the Singaporean population (aged 15 to 92) was 0.982 µg/kg bw/day for general consumers and 2.212 µg/kg bw/day for high consumers (95th percentile), which accounted for 49.1% and 110.6% of the tolerable dietary intake (TDI) at 2 µg/kg bw/day by the European Food Safety Authority (EFSA). The calculated margins of exposure (MOE) for GEs based on the dietary exposure for general consumers at 0.882 µg/kg bw/day and 2.209 µg/kg bw/day for high consumers were below 10,000, indicating a potential health concern. Our study showed that the occurrence of 3-MCPDEs and GEs varied among vegetable oils, and domestic cooking methods did not significantly impact the levels of 3-MCPDEs and GEs in prepared food. The critical factor influencing the prevalence and occurrence of 3-MCPDEs and GEs was the choice of oil used for cooking, which absorbed into the cooked food. It is essential to encourage the food industry to continue its innovation on mitigation measures to control and reduce 3-MCPDEs and GEs in vegetable oil production. Consumers are advised to make informed choices on food consumption and cooking oil for food preparation to reduce their exposure to 3-MCPDEs and GEs.

Keywords: 3-MCPD esters; Singapore; dietary exposure; domestic; food; glycidyl esters; home-cooked; processed food; risk assessment.

Grants and funding

This research received no external funding.