KMT2A oncoproteins induce epigenetic resistance to targeted therapies

bioRxiv [Preprint]. 2024 Aug 12:2023.12.29.573681. doi: 10.1101/2023.12.29.573681.

Abstract

Chromosomal translocations involving the Lysine-Methyl-Transferase-2A ( KMT2A ) locus generate potent oncogenic fusion proteins (oncoproteins) that disrupt regulation of developmental gene expression. By profiling the oncoprotein-target sites of 36 broadly representative KMT2A -rearranged leukemia samples, including three samples that underwent a lymphoid-to-myeloid lineage-switching event in response to therapy, we find the genomic enrichment of the oncoprotein is highly variable between samples and subject to dynamic regulation. At high levels of expression, the oncoproteins preferentially activate either an acute lymphoblastic leukemia (ALL) program, enriched for pro-B-cell genes, or an acute myeloid leukemia (AML) program, enriched for hematopoietic-stem-cell genes. The fusion-partner-specific-binding patterns over these gene sets are highly correlated with the prevalence of each mutation in ALL versus AML. In lineage-switching samples the oncoprotein levels are reduced and the oncoproteins preferentially activate granulocyte-monocyte progenitor (GMP) genes. In a sample that lineage switched during treatment with the menin inhibitor revumenib, the oncoprotein and menin are reduced to undetectable levels, but ENL, a transcriptional cofactor of the oncoprotein, persists on numerous oncoprotein-target loci, including genes in the GMP-like lineage-switching program. We propose KMT2A oncoproteins promote lineage-switching events through dynamic chromatin binding and can induce epigenetic lesions, marked by ENL, that support resistance to targeted therapies.

Publication types

  • Preprint