Background: Dysglycaemia increases the risk of myocardial infarction and subsequent recurrent cardiovascular events. However, the role of dysglycaemia in ischemia/reperfusion injury with development of irreversible myocardial tissue alterations remains poorly understood. In this study we aimed to investigate the association of ongoing dysglycaemia with persistence of infarct core iron and their longitudinal changes over time in patients undergoing primary percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI).
Methods: We analyzed 348 STEMI patients treated with primary PCI between 2016 and 2021 that were included in the prospective MARINA-STEMI study (NCT04113356). Peripheral venous blood samples for glucose and glycated hemoglobin (HbA1c) measurements were drawn on admission and 4 months after STEMI. Cardiac magnetic resonance (CMR) imaging including T2 * mapping for infarct core iron assessment was performed at both time points. Associations of dysglycaemia with persistent infarct core iron and iron resolution at 4 months were calculated using multivariable regression analysis.
Results: Intramyocardial hemorrhage was observed in 147 (42%) patients at baseline. Of these, 89 (61%) had persistent infarct core iron 4 months after infarction with increasing rates across HbA1c levels (<5.7%: 33%, ≥5.7: 79%). Persistent infarct core iron was independently associated with ongoing dysglycaemia defined by HbA1c at 4 months (OR: 7.87 [95% CI: 2.60-23.78]; p < 0.001), after adjustment for patient characteristics and CMR parameters. The independent association was present even after exclusion of patients with diabetes (pre- and newly diagnosed, n = 16).
Conclusions: In STEMI patients treated with primary PCI, ongoing dysglycaemia defined by HbA1c is independently associated with persistent infarct core iron and a lower likelihood of iron resolution. These findings suggest a potential association between ongoing dysglycaemia and persistent infarct core iron, which warrants further investigation for therapeutic implications.
Keywords: HbA1c; Intramyocardial hemorrhage; Iron resolution, Cardiac magnetic resonance imaging; Persistent iron; ST-elevation myocardial infarction.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.