Designer Small-Molecule Control System Based on Minocycline-Induced Disruption of Protein-Protein Interaction

ACS Chem Biol. 2024 Feb 16;19(2):308-324. doi: 10.1021/acschembio.3c00521. Epub 2024 Jan 20.

Abstract

A versatile, safe, and effective small-molecule control system is highly desirable for clinical cell therapy applications. Therefore, we developed a two-component small-molecule control system based on the disruption of protein-protein interactions using minocycline, an FDA-approved antibiotic with wide availability, excellent biodistribution, and low toxicity. The system comprises an anti-minocycline single-domain antibody (sdAb) and a minocycline-displaceable cyclic peptide. Here, we show how this versatile system can be applied to OFF-switch split CAR systems (MinoCAR) and universal CAR adaptors (MinoUniCAR) with reversible, transient, and dose-dependent suppression; to a tunable T cell activation module based on MyD88/CD40 signaling; to a controllable cellular payload secretion system based on IL12 KDEL retention; and as a cell/cell inducible junction. This work represents an important step forward in the development of a remote-controlled system to precisely control the timing, intensity, and safety of therapeutic interventions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Cell Communication*
  • Minocycline* / pharmacology
  • Signal Transduction
  • Tissue Distribution

Substances

  • Minocycline
  • Anti-Bacterial Agents