To examined alkaline phosphatase enzyme (ALP) activity and the effects of incorporating it in the thickener solution of a hydrogen-peroxide-based bleaching gel containing calcium-polyphosphate (CaPP) on the orthophosphate (PO43-) levels, bleaching effectiveness, and enamel microhardness. ALP activity was assessed at different pH levels and H2O2 concentrations, and in H2O- and Tris-based thickeners. Circular dichroism (CD) was used to examine the ALP secondary structure in water-, Tris-, or H2O2-based mediums. The PO43- levels were evaluated in thickeners with and without ALP. Enamel/dentin specimens were allocated into the following groups: control (without bleaching); commercial (Whiteness-HP-Maxx); Exp-H (H2O-based); CaPP-H; ALP-H (CaPP+ALP); Exp-T (Tris-based); CaPP-T; and ALP-T (CaPP+ALP). Color changes (ΔE/ΔE00) and the bleaching index (ΔWID) were calculated, and surface (SMH) and cross-sectional microhardness (CSMH) were assessed. The two-way ANOVA and Tukey's post-hoc tests were used to compare ALP and PO43- levels; generalized linear models were used to examine: ΔE/ΔE00/SMH/CSMH; and Kruskal-Wallis and Dunn's tests were used for ΔWID (α = 5%). The ALP activity was higher at pH 9, lower in H2O2-based mediums, and similar in both thickeners. The CD-spectra indicated denaturation of the enzyme upon contact with H2O2. The PO43- levels were higher after incorporating ALP, and the ΔE/ΔE00/ΔWID were comparable among bleached groups. SMH was lower after bleaching in Exp-H, while CSMH was highest in ALP-T.
Keywords: alkaline phosphatase; biomimetic; circular dichroism; hydrogen peroxide; polyphosphates; tooth bleaching.