The Molecular Twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients

Nat Cancer. 2024 Feb;5(2):299-314. doi: 10.1038/s43018-023-00697-7. Epub 2024 Jan 22.

Abstract

Contemporary analyses focused on a limited number of clinical and molecular biomarkers have been unable to accurately predict clinical outcomes in pancreatic ductal adenocarcinoma. Here we describe a precision medicine platform known as the Molecular Twin consisting of advanced machine-learning models and use it to analyze a dataset of 6,363 clinical and multi-omic molecular features from patients with resected pancreatic ductal adenocarcinoma to accurately predict disease survival (DS). We show that a full multi-omic model predicts DS with the highest accuracy and that plasma protein is the top single-omic predictor of DS. A parsimonious model learning only 589 multi-omic features demonstrated similar predictive performance as the full multi-omic model. Our platform enables discovery of parsimonious biomarker panels and performance assessment of outcome prediction models learning from resource-intensive panels. This approach has considerable potential to impact clinical care and democratize precision cancer medicine worldwide.

MeSH terms

  • Adenocarcinoma* / genetics
  • Adenocarcinoma* / surgery
  • Artificial Intelligence
  • Carcinoma, Pancreatic Ductal* / genetics
  • Carcinoma, Pancreatic Ductal* / surgery
  • Humans
  • Intelligence
  • Multiomics
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / surgery