The world's urban population is growing rapidly, and threatening natural ecosystems, especially streams. Urbanization leads to stream alterations, increased peak flow frequencies, and reduced water quality due to pollutants, morphological changes, and biodiversity loss, known as the urban stream syndrome. However, a shift towards recognizing urban streams as valuable natural systems is occurring, emphasizing green infrastructure and nature-based solutions. This study in Uruguay examined water quality in various watersheds with different urbanization levels and socio-environmental characteristics along a precipitation gradient. Using Geographic Information Systems (GIS) and in situ data, we assessed physicochemical parameters, generated territorial variables, and identified key predictors of water quality. We found that urbanization, particularly urban areas, paved areas, and populations without sanitation, significantly influenced water quality parameters. These factors explained over 50% of the variation in water quality indicators. However, the relationship between urbanization and water quality was non-linear, with abrupt declines after specific urban intensity thresholds. Our results illustrate that ensuring sanitation networks and managing green areas effectively are essential for preserving urban stream water quality. This research underscores the importance of interdisciplinary teams and localized data for informed freshwater resource management.
Keywords: Basin characterization; Green areas; Random Forest; Urban stream; Water pollution.
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.