Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae

bioRxiv [Preprint]. 2024 Mar 25:2023.12.30.573743. doi: 10.1101/2023.12.30.573743.

Abstract

Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches it occupies. H-NS, the histone-like nucleoid structuring protein, is the best studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified a few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs.

Importance: New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. Proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.

Publication types

  • Preprint