Zoonotic human infections with Ancylostoma ceylanicum have recently been reported in the Americas. We used archived human stool samples to study the geographic distribution of human infections with A. ceylanicum and anthropophilic hookworms in different geoclimatic regions (coastal, Andean, and Amazon) of Ecuador. We analyzed retrospectively archived human stool samples from five studies previously screened for hookworm infection by microscopy, of which four included hookworm-positive samples only and one involved hookworm-negative samples to increase geographic distribution of sampling. Stools were analyzed using multi-parallel quantitative polymerase chain reaction (qPCR) assays to detect Necator americanus, Ancylostoma duodenale, A. ceylanicum, Ascaris lumbricoides, Trichuris trichiura, and Strongyloides stercoralis. Sequencing was done for the A. ceylanicum cox1 gene. A total of 132 samples were analyzed, of which 69 (52.3%) were from hookworm-positive and 63 (47.7%) from hookworm-negative individuals by microscopy. Overall, 82.6% of microscopy-positive samples and 33.3% of microscopy-negative samples were positive for hookworm by qPCR. Of microscopy-positive samples, 36.2% were A. ceylanicum, 37.7% A. duodenale, and 33.3% N. americanus, whereas equivalent proportions for microscopy-negative samples were 1.6%, 31.7%, and 1.6%, respectively. Ancylostoma duodenale was the most widely dispersed geographically, followed by N. americanus. Ancylostoma ceylanicum was least dispersed but was detected in coastal and Amazon regions. In conclusion, human infections with A. ceylanicum, A. duodenale, and N. americanus were detected in different geoclimatic regions of Ecuador. Additional studies are required to further define the epidemiology of human A. ceylanicum infections, but the potentially widespread presence of this helminth in human populations in Ecuador has implications for hookworm control strategies.