Effect of ethylene oxide unit number in bis-EMA on the physical properties of additive-manufactured occlusal splint material

J Prosthodont Res. 2024 Oct 16;68(4):558-567. doi: 10.2186/jpr.JPR_D_23_00203. Epub 2024 Jan 29.

Abstract

Purpose: To investigate the effects of the number of ethylene oxide units in bis-EMA on the physical properties of additively manufactured occlusal splints.

Methods: Seven experimental materials containing bis-EMAs with three and 10 ethylene oxide units (BE3 and BE10, respectively) were prepared at different BE10 content rates (BE10-0%, -20%, -30%, -40%, -50%, -60%, and -80%). Half the specimens of each material were aged in boiling water. Flexural strength (FS), flexural modulus (FM), fracture toughness (FT), microwear depth (MD), degree of conversion (DC), water sorption (WSP), water solubility (WSL), color difference between non-aged and aged series (ΔE), and translucency (TP) were evaluated. All the evaluated properties other than FS and MD were analyzed by 1-way ANOVA and Tukey's post hoc analysis, while FS and MD were analyzed by Kruskal-Wallis's test and Bonferroni correction (α=0.05).

Results: BE10-80% revealed the lowest FS (P < 0.01 for BE10-0%, -20%, and -30%) and FM (P < 0.01, for all), while revealing the highest DC, WSP, WSL (P < 0.01 for all) and TP (P < 0.01 for all other than BE10-60%). BE10-50% showed the highest FT (P < 0.01 for all). BE10-50%, -60%, and -80% revealed significantly lower ΔE than others (P < 0.01) and lower MD than BE10-0% (P < 0.05). Regardless of the BE10 content, FS, FM, and FT decreased with aging.

Conclusions: The number of ethylene oxide units affects the physical properties of additively manufactured occlusal splints. The higher number of ethylene oxide units in bis-EMA enhanced the microwear resistance, DC, WSP, WSL, color stability, and translucency, whereas it deteriorated the FS and FM.

Keywords: Additive manufacturing; Bis-EMA; Ethylene oxide unit; Occlusal splint; Physical property.

MeSH terms

  • Bisphenol A-Glycidyl Methacrylate
  • Color
  • Dental Materials
  • Ethylene Oxide*
  • Flexural Strength*
  • Materials Testing*
  • Occlusal Splints*
  • Physical Phenomena
  • Solubility
  • Water

Substances

  • Ethylene Oxide
  • Water
  • Bisphenol A-Glycidyl Methacrylate
  • Dental Materials