Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.