Molecular prognostication in grade 3 meningiomas and p16/MTAP immunohistochemistry for predicting CDKN2A/B status

Neurooncol Adv. 2024 Jan 8;6(1):vdae002. doi: 10.1093/noajnl/vdae002. eCollection 2024 Jan-Dec.

Abstract

Background: The World Health Organization 2021 classification introduces molecular grading criteria for anaplastic meningiomas, including TERT promoter (TERTp) mutations and CDKN2A/B homozygous deletion. Additional adverse prognostic factors include H3K27me3 and BAP1 loss. The aim of this study was to explore whether these molecular alterations stratified clinical outcomes in a single-center cohort of grade 3 meningiomas. Additionally, we examined whether p16 and MTAP immunohistochemistry can predict CDKN2A/B status.

Methods: Clinical and histopathological information was obtained from the electronic medical records of grade 3 meningiomas resected at a tertiary center between 2007 and 2020. Molecular testing for TERTp mutations and CDKN2A/B copy-number status, methylation profiling, and immunohistochemistry for H3K27me3, BAP1, p16, and methylthioadenosine phosphorylase (MTAP) were performed. Predictors of survival were identified by Cox regression.

Results: Eight of 15 cases demonstrated elevated mitotic index (≥20 mitoses per 10 consecutive high-power fields), 1 tumor exhibited BAP1 loss, 4 harbored TERTp mutations, and 3 demonstrated CDKN2A/B homozygous deletion. Meningiomas with TERTp mutations and/or CDKN2A/B homozygous deletion showed significantly reduced survival compared to anaplastic meningiomas with elevated mitotic index alone. Immunohistochemical loss of p16 and MTAP demonstrated high sensitivity (67% and 100%, respectively) and specificity (100% and 100%, respectively) for predicting CDKN2A/B status.

Conclusions: Molecular alterations of grade 3 meningiomas stratify clinical outcomes more so than histologic features alone. Immunohistochemical loss of p16 and MTAP show promise in predicting CDKN2A/B status.

Keywords: MTAP; meningioma; molecular grading; p16.