Background: Bacterial contamination of implants has been linked to biofilm formation and subsequent infection, capsular contracture, and breast implant-associated anaplastic large cell lymphoma. Reducing contamination during implant insertion should therefore reduce biofilm formation disease sequelae.
Objectives: The aim of this study was to compare levels of contamination between preventative techniques.
Methods: A model to simulate the passage of implants through a skin incision was designed that utilized a sterile textured polyvinyl plastic sheet contaminated with Staphylococcus epidermidis. In the first stage of the polyvinyl contamination model, implants were subject to infection-mitigation techniques and passed through the incision, then placed onto horse blood agar plates and incubated for 24 hours. In the second stage of the study the same contamination was applied to human abdominal wall specimens. A 5 cm incision was made through skin and fat, then implants were passed through and levels of contamination were measured as described.
Results: Smooth implants grew a mean of 95 colony-forming units (CFUs; approximately 1 CFU/cm2) and textured implants grew 86 CFUs (also approximately 1 CFU/cm2). CFU counts were analyzed by the Mann-Whitney U-test which showed no significant difference between implant types (P < .05); independent-sample t-tests showed a significant difference. The dependent-variable techniques were then compared as groups by one-way analysis of variance, which also showed a significant reduction compared with the control group (P < .01).
Conclusions: This in vitro study has shown the effectiveness of antiseptic rinse and skin/implant barrier techniques for reducing bacterial contamination of breast implants at the time of insertion.
© The Author(s) 2024. Published by Oxford University Press on behalf of The Aesthetic Society. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].