Spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are fundamental electrophysiological events produced by quantal vesicular transmitter release at synapses. Their analysis can provide important information regarding pre- and postsynaptic function. However, the small signal relative to recording noise requires expertise and considerable time for their identification. Furthermore, many mEPSCs smaller than ~8 pA are not well resolved (e.g., those produced at distant synapses or synapses with few receptor channels). Here, we describe an automated approach to detect mEPSCs using a machine learning-based tool. This method, which can be easily generalized to other one-dimensional signals, eliminates inter-observer bias, provides an estimate of its sensitivity and specificity and permits reliable detection of small (e.g., 5 pA) spontaneous unitary synaptic events.
Keywords: machine learning; miniature; synapse.