Cooperation between primary malignant cells and stromal cells can mediate the establishment of lung metastatic niches. Here, we characterized the landscape of cell populations in the tumor microenvironment in treatment-naïve osteosarcoma using single-cell RNA sequencing and identified a stem cell-like cluster with tumor cell-initiating properties and prometastatic traits. CXCL14 was specifically enriched in the stem cell-like cluster and was also significantly upregulated in lung metastases compared with primary tumors. CXCL14 induced stromal reprogramming and evoked a malignant phenotype in fibroblasts to form a supportive lung metastatic niche. Binding of CXCL14 to heterodimeric integrin α11β1 on fibroblasts activated actomyosin contractility and matrix remodeling properties. CXCL14-stimulated fibroblasts produced TGFβ and increased osteosarcoma invasion and migration. mAbs targeting the CXCL14-integrin α11β1 axis inhibited fibroblast TGFβ production, enhanced CD8+ T cell-mediated antitumor immunity, and suppressed osteosarcoma lung metastasis. Taken together, these findings identify cross-talk between osteosarcoma cells and fibroblasts that promotes metastasis and demonstrate that targeting the CXCL14-integrin α11β1 axis is a potential strategy to inhibit osteosarcoma lung metastasis.
Significance: Cooperation between stem-like osteosarcoma cells and fibroblasts mediated by a CXCL14-integrin α11β1 axis creates a tumor-supportive lung metastatic niche and represents a therapeutic target to suppress osteosarcoma metastasis.
©2024 American Association for Cancer Research.