A state-of-the-art review of the physical and durability characteristics and microstructure behavior of ultra-high-performance geopolymer concrete

Heliyon. 2024 Jan 11;10(2):e24263. doi: 10.1016/j.heliyon.2024.e24263. eCollection 2024 Jan 30.

Abstract

This paper provides a comprehensive review of ultra-high-performance geopolymer concrete (UHPGPC), an innovative, eco-friendly, and cost-effective variant of ultra-high-performance concrete (UHPC), devised to meet the rising request for ultra-high-strength construction materials. Previous research papers have not thoroughly analyzed and compared the rheological, physical, durability, and microstructural properties of UHPGPC with UHPC. Similarly, review articles scarcely investigate UHPGPC's strength properties and microstructural behavior under high temperatures. This paper includes an assessment of the correlation between compressive strength, splitting tensile strength, and modulus of elasticity (MOE). The current study also compares chloride ion penetration test outcomes, elevated temperature, electrical resistivity, and porosity tests to evaluate durability. To analyze the microstructure of UHPGPC, the paper assesses results from Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and Mercury Intrusion Porosimetry (MIP). The findings from the present paper suggest that UHPGPC effectively meets the ideal mechanical property specifications of UHPC. Compared to UHPC, UHPGPC displayed a higher ion passage propensity due to larger pores (>100 nm). Geopolymer technologies present a greener path for producing UHPC by consuming less energy and emitting reduced CO2. Introducing mineral fillers like silica fume impacts the mixture's flowability and increases its water needs. However, adding an optimal ratio of micro-silica as a partial substitute for granulated blast furnace slag further bolsters the strength characteristics of UHPGPC. The strength of UHPC can also be notably improved by adjusting the water-to-binder ratio, with specific ratios yielding considerable enhancements in compression strength. The selection of an alkaline activator plays a pivotal role in UHPC's heat resilience. Among them, a combination of potassium hydroxide and sodium silicate is the prime chemical activator for boosting strength performance, durability behavior, and microstructural attributes, particularly at temperatures beyond 600 °C. Eco-friendly Geopolymer Composites (EGCs) offer lower embodied energy and CO2 emissions than traditional composites, with certain components like polyvinyl alcohol fibers being key contributors to these emissions. Progress in self-healing materials is driving sustainability in construction through innovative techniques, such as bacterial applications and specific chemical reactions. The strength and workability of Engineered Geopolymer Composites are influenced by their fiber content, with certain fibers interacting weaker than others. On a microstructural level, UHPGPC has a relatively weaker structure than UHPC due to differences in pore size, but its durability is improved when reinforced with fibers.

Keywords: Elevated temperature; Modulus of elasticity; SEM; TGA; UHPGPC.

Publication types

  • Review