miR-107-5p ameliorates neurological damage, oxidative stress, and immune responses in mice with Alzheimer's disease by suppressing the Toll-like receptor 4 (TLR4)/nuclear factor-kappaB(NF-κB) pathway

Kaohsiung J Med Sci. 2024 Feb;40(2):119-130. doi: 10.1002/kjm2.12797. Epub 2024 Jan 19.

Abstract

Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aβ (Aβ1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1β) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aβ1-40 and Aβ1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1β levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.

Keywords: Alzheimer's disease; TLR4/NF-κB; amyloid-Aβ; miR-107-5p; neurological damage.

MeSH terms

  • Alzheimer Disease* / genetics
  • Animals
  • Apolipoproteins E / metabolism
  • Humans
  • Immunity
  • Interleukin-6 / metabolism
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Oxidative Stress / genetics
  • Reactive Oxygen Species
  • Signal Transduction / genetics
  • Toll-Like Receptor 4 / genetics
  • Toll-Like Receptor 4 / metabolism
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Apolipoproteins E
  • Interleukin-6
  • MicroRNAs
  • NF-kappa B
  • Reactive Oxygen Species
  • Toll-Like Receptor 4
  • Tumor Necrosis Factor-alpha
  • MIRN107 microRNA, mouse