Objective: Detecting the cancerous growth margin and achieving a negative margin is one of the challenges that surgeons face during cancer procedures. A smart electrosurgical knife with integrated optical fibers has been designed previously to enable real-time use of diffuse reflectance spectroscopy for intraoperative margin assessment. In this paper, the thermal effect of the electrosurgical knife on tissue sensing is investigated.
Methods: Porcine tissues and phantoms were used to investigate the performance of the smart electrosurgical knife after electrosurgery. The fat-to-water content ratio (F/W-ratio) served as the discriminative parameter for distinguishing tissues and tissue mimicking phantoms with varying fat content. The F/W-ratio of tissues and phantoms was measured with the smart electrosurgical knife before and after 14 minutes of electrosurgery. Additionally, a layered porcine tissue and phantom were sliced and measured from top to bottom with the smart electrosurgical knife.
Results: Mapping the thermal activity of the electrosurgical knife's electrode during animal tissue electrosurgery revealed temperatures exceeding 400 °C. Electrosurgery for 14 minutes had no impact on the device's accurate detection of the F/W-ratio. The smart electrosurgical knife enables real-time tissue detection and predicts the fat content of the next layer from 4 mm ahead.
Conclusion: The design of the smart electrosurgical knife outlined in this paper demonstrates its potential utility for tissue detection during electrosurgery.
Significance: In the future, the smart electrosurgical knife could be a valuable intraoperative margin assessment tool, aiding surgeons in detecting tumor borders and achieving negative margins.