Epigenetic regulation is involved in post-stroke neuroplasticity. We investigated the effects of intracerebral hemorrhage (ICH) on histone acetylation and gene expression related to neuronal plasticity in the bilateral sensorimotor cortices, which may affect post-stroke sensorimotor function. Wistar rats were randomly divided into the SHAM and ICH groups. We performed ICH surgery stereotaxically based on the microinjection of a collagenase solution in the ICH group. Foot fault and cylinder tests were performed to evaluate motor functions at 4-time points, including pre-ICH surgery. The amount of acetyl histones and the mRNA expression of neurotrophic factors crucial to neuroplasticity in the bilateral sensorimotor cortices were analyzed approximately 2 weeks after ICH surgery. Sensorimotor functions of the ICH group were inferior to those of the SHAM group during 2 weeks post-ICH. ICH increased the acetylation of histone H3 and H4 over the sham level in the ipsilateral and contralateral cortices. ICH increased the mRNA expression of IGF-1, but decreased the expression of BDNF compared with the sham level in the ipsilateral cortex. The present study suggests that histone acetylation levels are enhanced in bilateral sensorimotor cortices after ICH, presenting an altered epigenetic platform for gene expressions related to neuronal plasticity.