Despite significant improvements in vaccines and chemotherapeutic drugs, pathogenic RNA viruses continue to have a profound impact on the global economy and pose a serious threat to animal and human health through emerging and re-emerging outbreaks of diseases. To overcome the challenge of viral adaptation and evolution, increased vigilance is required. Particularly, antiviral drugs derived from new, natural sources provide an attractive strategy for controlling problematic viral diseases. In this antiviral study, we discovered a previously unknown bacterium, Mameliella sp. M20D2D8, by conducting an antiviral screening of marine microorganisms. An extract from M20D2D8 exhibited antiviral activity with low cytotoxicity and was found to be effective in vitro against multiple influenza virus strains: A/PR8 (IC50 = 2.93 µg/mL, SI = 294.85), A/Phil82 (IC50 = 1.42 µg/mL, SI = 608.38), and B/Yamagata (IC50 = 1.59 µg/mL, SI = 543.33). The antiviral action was found to occur in the post-entry stages of viral replication and to suppress viral replication by inducing apoptosis in infected cells. Moreover, it efficiently suppressed viral genome replication, protein synthesis, and infectivity in MDCK and A549 cells. Our findings highlight the antiviral capabilities of a novel marine bacterium, which could potentially be useful in the development of drugs for controlling viral diseases.
Keywords: Apoptosis; Broad-spectrum therapeutics; Influenza virus; Mameliella sp.; Marine extract.
© 2024. The Author(s).