Continuous detection of critical markers directly at the point of interest and in undiluted biological fluids represents the next fundamental step in biosensing. The goal of realizing such a platform is utterly challenging because it requires a reversible biosensor that enables the tracking of pico- to nanomolar molecular concentrations over long time spans in a compact device. Here we describe a sensing method based on plasmon-enhanced fluorescence capable of single-molecule detection of unlabeled analyte by employing biofunctionalized gold nanoparticles. The very strong plasmon-enhanced fluorescence signals allow for single-molecule sensing in unaltered biological media, while the use of low-affinity interactions ensures the continuous tracking of increasing and decreasing analyte concentrations with picomolar sensitivity. We demonstrate the use of a sandwich assay for a DNA cancer marker with a limit of detection of picomolar and a time response of 10 min. The enhanced single-molecule signals will allow for miniaturization into a small and cheap platform with multiplexing capability for application in point-of-care diagnostics, monitoring of industrial processes, and safe keeping of the environment.
Keywords: continuous monitoring; fluorescence; nanoparticles; plasmon sensing; single-molecule.