Objective: Disruption of the gingival epithelial barrier is often mediated by aging or the pathogen Porphyromonas gingivalis. This study examined the combined effects of aging and P. gingivalis exposure on gingival epithelial barrier molecules.
Methods: In vitro experiments involved treating young- and senescence-induced primary human gingival epithelial progenitor cells (HGEPp) with P. gingivalis lipopolysaccharide (LPS). Transepithelial electrical resistance (TER) and paracellular permeability were measured. In vivo, male C57BL/6J mice aged 10 (young) and 80 (old) weeks were divided into four groups: young, old, young with P. gingivalis (Pg-Young) inoculation, and old with P. gingivalis (Pg-Old) inoculation. P. gingivalis was inoculated orally thrice a week for 5 weeks. The mice were sacrificed 30 days after the last inoculation, and samples were collected for further procedures. The junctional molecules (Claudin-1, Claudin-2, E-cadherin, and Connexin) were analyzed for mRNA expression using qRT-PCR and protein production using western blotting and immunohistochemistry. The alveolar bone loss and inflammatory cytokine levels in gingival tissues were also assessed.
Results: LPS-treated senescent cells exhibited a pronounced reduction in TER, increased permeability to albumin protein, significant upregulation of Claudin-1 and Claudin-2, and significant downregulation of E-cadherin and Connexin. Furthermore, the Pg-Old group showed identical results with aging in addition to an increase in alveolar bone loss, significantly higher than that in the other groups.
Conclusion: In conclusion, the host susceptibility to periodontal pathogens increases with age through changes in the gingival epithelial barrier molecules.
Keywords: Aging; Epithelial barrier; P. gingivalis; Permeability; Transepithelial resistance.
Copyright © 2024. Published by Elsevier B.V.