Capsaicin (CAP) has been implicated as a gastroprotective agent in the treatment of peptic ulcers. However, its oral administration is hampered by its poor aqueous solubility and caustic effect at high administered doses. To address these limitations, we describe the development of gastric floating, sustained release electrospun films loaded with CAP. The nanofiber films were formulated using the polymers Eudragit RL/RS and sodium bicarbonate (SB) as the effervescent agent. The films were tested for their physicochemical properties, and film buoyancy and in vitro release of CAP were assessed in simulated gastric fluid. The cytocompatibility and anti-inflammatory properties of the films were evaluated in lipopolysaccharide (LPS)-stimulated Caco-2 cells. The amorphous films showed improved wettability, a short floating lag time (<1 s) and a total floating time of over 24 h accompanied by sustained CAP release for up to 24 h. CAP-loaded films demonstrated biocompatibility with Caco-2 cells and potential cytoprotective effects by attenuating inflammatory cytokine and reactive oxygen species (ROS) production in LPS-stimulated Caco-2 cells. The gastric floating electrospun films could serve as a platform for sustained and stomach-specific drug delivery applications.
Keywords: Capsaicin; Electrospinning; Floating drug delivery systems; Gastroretentive dosage forms; Peptic ulcers.
Copyright © 2024 Elsevier B.V. All rights reserved.