Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/β-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/β-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.
Keywords: CP: Developmental biology; CP: Neuroscience; brain development; gliogenesis; glutamatergic progenitors; neonatal brain injury; neural stem cells; neurogenesis; pharmacological treatment; ventricular-subventricular zone.
Copyright © 2024. Published by Elsevier Inc.