Accurate species identification is a prerequisite for successful management of tuberculosis and non-tuberculous mycobacterial (NTM) diseases. The novel FluoroType Mycobacteria assay combines three established GenoType DNA strip assays (CM, AS, and NTM-DR), allowing detection of Mycobacterium tuberculosis and 32 NTM species/subspecies in a single assay with automatic detection and result analysis. We evaluated the clinical performance of the FluoroType assay and its feasibility in replacing the GenoType Mycobacterium CM assay as the initial method for mycobacterial identification. A total of 191 clinical mycobacterial cultures were analyzed in this study: 180 identified for one mycobacterial species, 6 for multiple, and 5 for no mycobacterial species. Positive percent agreement (PPA) for the FluoroType assay was 87.8% (n = 158), with full agreement for 23/29 species. Weakest PPA was observed for Mycobacterium gordonae (50%, n = 9/18), Mycobacterium interjectum (40%, n = 2/5), and Mycobacterium intracellulare (42%, n = 5/12). Clinical and mixed cultures containing multiple mycobacterial species gave equally single species and genus level identifications (n = 30). No cross-reactivity with non-mycobacterial species was observed (n = 22). In a separate in silico analysis of 2016-2022 HUS area (Finland) register data (n = 2,573), the FluoroType assay was estimated to produce 18.8% (n = 471) inadequate identifications (genus/false species) if used as the primary identification method compared to 14.2% (n = 366) with the GenoType CM assay. The FluoroType assay was significantly more convenient in terms of assay workflow and result interpretation compared to the entirely manual and subjective GenoType CM assay. However, the feasibility of the assay should be critically assessed with respect to the local NTM species distribution.
Importance: This study is the first clinical evaluation report of the novel FluoroType Mycobacteria assay. The assay has the potential to replace the established GenoType NTM product family in identification of culture-enriched mycobacteria. However, our research results suggest that the assay performs suboptimally and may not be feasible for use in all clinical settings.
Keywords: FluoroType; NTM; mycobacteria.