Integrating artificial intelligence into lung cancer screening: a randomised controlled trial protocol

BMJ Open. 2024 Feb 13;14(2):e074680. doi: 10.1136/bmjopen-2023-074680.

Abstract

Introduction: Lung cancer (LC) is the most common cause of cancer-related deaths worldwide. Its early detection can be achieved with a CT scan. Two large randomised trials proved the efficacy of low-dose CT (LDCT)-based lung cancer screening (LCS) in high-risk populations. The decrease in specific mortality is 20%-25%.Nonetheless, implementing LCS on a large scale faces obstacles due to the low number of thoracic radiologists and CT scans available for the eligible population and the high frequency of false-positive screening results and the long period of indeterminacy of nodules that can reach up to 24 months, which is a source of prolonged anxiety and multiple costly examinations with possible side effects.Deep learning, an artificial intelligence solution has shown promising results in retrospective trials detecting lung nodules and characterising them. However, until now no prospective studies have demonstrated their importance in a real-life setting.

Methods and analysis: This open-label randomised controlled study focuses on LCS for patients aged 50-80 years, who smoked more than 20 pack-years, whether active or quit smoking less than 15 years ago. Its objective is to determine whether assisting a multidisciplinary team (MDT) with a 3D convolutional network-based analysis of screening chest CT scans accelerates the definitive classification of nodules into malignant or benign. 2722 patients will be included with the aim to demonstrate a 3-month reduction in the delay between lung nodule detection and its definitive classification into benign or malignant.

Ethics and dissemination: The sponsor of this study is the University Hospital of Nice. The study was approved for France by the ethical committee CPP (Comités de Protection des Personnes) Sud-Ouest et outre-mer III (No. 2022-A01543-40) and the Agence Nationale du Medicament et des produits de Santé (Ministry of Health) in December 2023. The findings of the trial will be disseminated through peer-reviewed journals and national and international conference presentations.

Trial registration number: NCT05704920.

Keywords: Computed tomography; ONCOLOGY; Respiratory tract tumours.

Publication types

  • Clinical Trial Protocol
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence
  • Early Detection of Cancer / methods
  • Humans
  • Lung Neoplasms* / diagnostic imaging
  • Lung Neoplasms* / epidemiology
  • Randomized Controlled Trials as Topic
  • Retrospective Studies
  • Tomography, X-Ray Computed / methods

Associated data

  • ClinicalTrials.gov/NCT05704920