Heliconius butterflies exhibit expanded mushroom bodies, a key brain region for learning and memory in insects, and a novel foraging strategy unique among Lepidoptera - traplining for pollen. We tested visual long-term memory across six Heliconius and outgroup Heliconiini species. Heliconius species exhibited greater fidelity to learned colors after eight days without reinforcement, with further evidence of recall at 13 days. We also measured the plastic response of the mushroom body calyces over this time period, finding substantial post-eclosion expansion and synaptic pruning in the calyx of Heliconius erato, but not in the outgroup Heliconiini Dryas iulia. In Heliconius erato, visual associative learning experience specifically was associated with a greater retention of synapses and recall accuracy was positively correlated with synapse number. These results suggest that increases in the size of specific brain regions and changes in their plastic response to experience may coevolve to support novel behaviors.
Keywords: Entomology; Evolutionary biology; Neuroscience.
© 2024 The Authors.