Objective: Sleepiness and fatigue are common complaints among individuals with sleep disorders. The two concepts are often used interchangeably, causing difficulty with differential diagnosis and treatment decisions. The current study investigated sleep disorder patients to determine which factors best differentiated sleepiness from fatigue.
Methods: The study used a subset of participants from a multi-site study (n = 606), using a cross-sectional study design. We selected 60 variables associated with either sleepiness or fatigue, including demographic, mental health, and lifestyle factors, medical history, sleep questionnaires, rest-activity rhythms (actigraphy), polysomnographic (PSG) variables, and sleep diaries. Fatigue was measured with the Fatigue Severity Scale and sleepiness was measured with the Epworth Sleepiness Scale. A Random Forest machine learning approach was utilized for analysis.
Results: Participants' average age was 47.5 years (SD 14.0), 54.6% female, and the most common sleep disorder diagnosis was obstructive sleep apnea (67.4%). Sleepiness and fatigue were moderately correlated (r = 0.334). The model for fatigue (explained variance 49.5%) indicated depression was the strongest predictor (relative explained variance 42.7%), followed by insomnia severity (12.3%). The model for sleepiness (explained variance 17.9%), indicated insomnia symptoms was the strongest predictor (relative explained variance 17.6%). A post hoc receiver operating characteristic analysis indicated depression could be used to discriminate fatigue (AUC = 0.856) but not sleepiness (AUC = 0.643).
Conclusions: The moderate correlation between fatigue and sleepiness supports previous literature that the two concepts are overlapping yet distinct. Importantly, depression played a more prominent role in characterizing fatigue than sleepiness, suggesting depression could be used to differentiate the two concepts.
Keywords: Depression; Fatigue; Machine learning; Random forest; Sleepiness.
Copyright © 2024 Elsevier Inc. All rights reserved.