Background: Haeme oxygenase (HO-1) affords protection against ischemia/reperfusion (I/R) injury; however, its effects on liver regeneration remain poorly explored. Our previous studies have shown that HO-1 is probably involved in liver regeneration, but its role in small-for-size syndrome (SFSS) is still unclear. Therefore, this study aims to investigate the effects of HO-1 on small-for-size graft (SFSG) and the underlying mechanism.
Methods: Knockout of HO-1 rats by TALEN technique. Immunohistochemistry was used to detect HO-1 nuclear translocation. Haeme oxygenase activity was measured by detecting the amount of carbon monoxide (CO) generated from cell lysates. Flow cytometry was used to detect cell apoptosis and cell cycle. Western blot were performed to measure the expression level of HO-1 protein.
Results: We identified that HO-1 was involved in SFSG regeneration; HO-1-knockout rats demonstrated significantly decreased liver proliferation and recovery. Interestingly, our results showed HO-1-induced SFSG regeneration was more likely to be the primary protector against SFSS than IRI. Furthermore, we verified the nuclear translocation of HO-1 and its protective effect on hypoxia/reoxygenation (H/R) damage in clone9 cells. Our results indicated that the HO-1 protein itself rather than heme breakdown metabolites might play a key role in liver regeneration.
Conclusions: The HO-1 protein itself rather than its metabolites possess a protective effect on small-for-size graft (SFSG) against SFSS via nuclear translocation.
Copyright © 2024 Elsevier Inc. All rights reserved.