Objective: Adenoid cystic carcinoma (AdCC) of the Bartholin's gland (AdCC-BG) is a very rare gynecologic vulvar malignancy. AdCC-BGs are slow-growing but locally aggressive and are associated with high recurrence rates. Here we sought to characterize the molecular underpinning of AdCC-BGs.
Methods: AdCC-BGs (n = 6) were subjected to a combination of RNA-sequencing, targeted DNA-sequencing, reverse-transcription PCR, fluorescence in situ hybridization (FISH) and MYB immunohistochemistry (IHC). Clinicopathologic variables, somatic mutations, copy number alterations and chimeric transcripts were assessed.
Results: All six AdCC-BGs were biphasic, composed of ductal and myoepithelial cells. Akin to salivary gland and breast AdCCs, three AdCC-BGs had the MYB::NFIB fusion gene with varying breakpoints, all of which were associated with MYB overexpression by IHC. Two AdCC-BGs were underpinned by MYBL1 fusion genes with different gene partners, including MYBL1::RAD51B and MYBL1::EWSR1 gene fusions, and showed MYB protein expression. Although the final AdCC-BG studied had MYB protein overexpression, no gene fusion was identified. AdCC-BGs harbored few additional somatic genetic alterations, and only few mutations in cancer-related genes were identified, including GNAQ, GNAS, KDM6A, AKT1 and BCL2, none of which were recurrent. Two AdCC-BGs, both with a MYB::NFIB fusion gene, developed metastatic disease.
Conclusions: AdCC-BGs constitute a convergent phenotype, whereby activation of MYB or MYBL1 can be driven by the MYB::NFIB fusion gene or MYBL1 rearrangements. Our observations further support the notion that AdCCs, irrespective of organ site, constitute a genotypic-phenotypic correlation. Assessment of MYB or MYBL1 rearrangements may be used as an ancillary marker for the diagnosis of AdCC-BGs.
Keywords: Adenoid cystic carcinoma; Bartholin's glands; MYB; MYB::NFIB fusion gene; MYBL1.
Copyright © 2024 Elsevier Inc. All rights reserved.