Herein, we report an efficient and straightforward approach for the synthesis of N-alkylated aminoquinoline derivatives by recyclable Cd-containing coordination polymer-catalyzed reactions of aminoquinolines with primary alcohols via the borrowing hydrogen strategy. In this work, a new type of coordination polymer [Cd(CIA)(phen)2(H2O)]n was successfully designed and fabricated. The molecular structure was corroborated by single-crystal X-ray diffraction and fully characterized by PXRD, FT-IR, TGA, and XPS. Importantly, this polymer revealed high catalytic activity for the N-alkylation reaction of 2-aminoquinoline and 8-aminoquinoline with inexpensive and low-toxicity alcohols as alkylating agents in excellent yields up to 95%. Interestingly, the present synthetic protocol was successfully applied for the gram-level synthesis of several biologically active compounds. In addition, several control reactions were carried out to investigate the possible mechanisms of this transformation. Finally, recycling experiments indicated that the cadmium coordination polymer showed good recovery performance for borrowing hydrogen reactions.