The Effects of a Supramaximal Intermittent Training Program on Aerobic and Anaerobic Running Measures in Junior Male Soccer Players

J Hum Kinet. 2023 Oct 11:90:253-267. doi: 10.5114/jhk/170755. eCollection 2024 Jan.

Abstract

This study investigated the effectiveness of supplementing regular preseason soccer training with a supramaximal intermittent shuttle-run training (ISRT) model prescribed from Carminatti's Test peak speed (PST-CAR) in aerobic performance-related indices and sprinting speed in male junior soccer players. Twenty-three national-level soccer players (mean ± SD; age 18.07 ± 0.9 y, body height 1.76 ± 0.65 m, body mass 71.9 ± 8.7 kg) were assigned to either an experimental group (EG; n = 13) performing ISRT + soccer training or a control group (CG; n = 10) that followed regular preseason soccer training alone. The following tests were applied before and after the eight-week training intervention: (i) incremental treadmill tests (VO2max and lactate minimum speed - LMS); (ii) linear 30-m sprint test and Carminatti's Test (PST-CAR). Results indicated larger gains for the EG in LMS (Δ = 9.53% vs. 2.82%) and PST-CAR (Δ = 5.50% vs. 2.10%) than in the CG. Furthermore, changes in VO2max produced higher effect size (d) values for the EG (Δ = 6.67%; d = 0.59) than the CG (Δ = 1.88%; d = 0.18). Both groups improved (p = 0.002) their flying 20-m sprint speed (EG: Δ = 1.01%; CG: Δ = 1.56%). However, small decreases were observed for 10-m sprint speed in the CG (Δ = -2.19%; d = -0.44), while only trivial changes were noticed for the EG (Δ = -0.50%; d = -0.16). Our data support that additional supramaximal ISRT is an effective training stimulus to enhance aerobic performance-related indices and promote small improvements in maximal running speed without impairing the soccer players' acceleration capacity. This study also shows that PST-CAR can be useful for individualizing running intensity in supramaximal ISRT modes.

Keywords: Carminatti’s test; football association; interval training; maximal oxygen uptake; running performance.