Background: Because of the high cross-sensitization among tree nuts, the NUT CRACKER (Nut Co-reactivity-Acquiring Knowledge for Elimination Recommendations) study proposed a diagnostic algorithm to minimize the number of required oral food challenges (OFCs).
Objective: To validate the algorithm for cashew and pistachio allergy and determine markers for allergic severity.
Methods: Patients (n = 125) with a median age of 7.8 (interquartile range, 5.9-11.2) years with suspected tree nut allergy were evaluated prospectively with decision tree points on the basis of skin prick test (SPT), basophil activation test (BAT), and knowledge of the coincidence of allergies. Validation of allergic status was determined by OFC. Markers of clinical severity were evaluated using the combined original and prospective cohort (n = 187) in relationship to SPT, BAT, and Ana o 3-sIgE.
Results: Reactivity to cashew in SPT, BAT, and Ana o 3-sIgE and the incidence of abdominal pain on challenge were significantly higher in dual-allergic cashew/pistachio patients (n = 82) versus single cashew allergic patients (n = 18) (P = .001). All 3 diagnostic tests showed significant inverse correlation with log10 reaction doses for positive cashew OFC. The algorithm reduced overall the total number of OFCs by 72.0%, with a positive predictive value and negative predictive value of 93.0% and 99.0%, respectively. Cashew false-positives were observed primarily in hazelnut-allergic patients (P = .026). In this population, Ana o 3-specific IgE could diagnose cashew allergy with a sensitivity of more than 90% and a specificity of more than 95%.
Conclusions: The NUT CRACKER diagnostic algorithm was validated and reduced the number of diagnostic OFCs required. Markers for severity phenotypes may guide oral immunotherapy protocols, improving the risk/benefit ratio for patients.
Keywords: Ana o 3 component; Basophil activation test; Diagnostic algorithm; Food allergy; Oral food challenge.
Copyright © 2024 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.