Troponin Structural Dynamics in the Native Cardiac Thin Filament Revealed by Cryo Electron Microscopy

J Mol Biol. 2024 Mar 15;436(6):168498. doi: 10.1016/j.jmb.2024.168498. Epub 2024 Feb 20.

Abstract

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.

Keywords: cryo-EM; muscle regulation; myosin binding protein C; thin filament; troponin.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Actins* / metabolism
  • Actomyosin
  • Calcium / metabolism
  • Cryoelectron Microscopy
  • Myosins / chemistry
  • Tropomyosin / chemistry
  • Troponin* / chemistry
  • Troponin* / metabolism

Substances

  • Actins
  • Actomyosin
  • Calcium
  • Myosins
  • Tropomyosin
  • Troponin