Reducing Pharmaceuticals in Water, a New Module Integrated in the Pharmacy Game: Evaluating the Module's Effects on Students' Knowledge and Attitudes

Pharmacy (Basel). 2024 Feb 6;12(1):28. doi: 10.3390/pharmacy12010028.

Abstract

Pharmaceutical residues end up in surface waters, impacting drinking water sources and contaminating the aquatic ecosystem. Pharmacists can play a role in reducing pharmaceutical residues, yet this is often not addressed in pharmacy undergraduate education. Therefore, we developed the educational module "Reducing Pharmaceuticals in Water" for pharmacy students; this was integrated in our pharmacy simulation game for third year Master of Pharmacy students at the University of Groningen. In this study, we aim to evaluate the effects of the module on students' knowledge of pharmaceutical residues in water, to describe students' experiences in taking the module, and to explore their attitudes towards green pharmacy education in general. This mixed-methods study included quantitative measurements, before and after students took the module (intervention group) and in a control group which did not receive the module. Data were collected between February 2023 and June 2023. Overall, 29 students took the module and 36 students were in the control group. The knowledge score of students in the intervention group (N = 29) increased significantly from 9.3 to 12.9 out of 22 (p < 0.001). The knowledge score of the students in the control group was (8.9 out of 22). Students found the e-learning and the patient cases the most exciting part of this module. Students also recognized the need to including environmental issues in pharmacy education. In conclusion, the module contributes towards improved knowledge and increased awareness of the impact of pharmaceuticals found in water. It represents a promising strategy to strengthen pharmacist's role in mitigating the amount and the effect of pharmaceuticals on water and the environment in the future.

Keywords: e-learning; eco-toxicity; environmental sustainability; pharmaceuticals in water; pharmacy education; the pharmacy game.