Nanoplastics released from consumer plastic food containers are emerging environmental pollutants and directly ingested as part of the diet. However, quantification methods for nanoplastics are still lacking. Herein, a rapid identification and mass quantification approach was developed for nanoplastics analysis by combining electromagnetic heating with pyrolysis mass spectrometry (Eh-Py-MS). The pyrolysis products directly entered into the MS, which omits the gas phase separation process and shortens the detection time. A compact pyrolysis chamber was used and this increased the sample transfer efficiency and lowered power requirement. The operational parameters were systematically examined. The influence of nanoplastic size, additive, humic acid, and aging on detection was investigated, and it was concluded that environmental factors (humic acid, aging) and plastic properties (size, additives) did not influence the detection. The developed chamber showed that the limit of detection of polystyrene (PS) nanoplastics was 15.72 ng. Several typical food packages were demonstrated with satisfactory recovery rates (87.5-110%) and precision (RSD ≤11.36%). These results suggested that the consumer plastic food containers are a significant source of direct exposure to nanoplastics in humans from the environment.
Keywords: Nanoplastics; Polystyrene; Pyrolysis; Quantitative.
Copyright © 2024 Elsevier B.V. All rights reserved.