EEG multi-domain feature transfer based on sparse regularized Tucker decomposition

Cogn Neurodyn. 2024 Feb;18(1):185-197. doi: 10.1007/s11571-023-09936-0. Epub 2023 Feb 15.

Abstract

Tensor analysis of electroencephalogram (EEG) can extract the activity information and the potential interaction between different brain regions. However, EEG data varies between subjects, and the existing tensor decomposition algorithms cannot guarantee that the features across subjects are distributed in the same domain, which leads to the non-objectivity of the classification result and analysis, In addition, traditional Tucker decomposition is prone to the explosion of feature dimensions. To solve these problems, combined with the idea of feature transfer, a novel EEG tensor transfer algorithm, Tensor Subspace Learning based on Sparse Regularized Tucker Decomposition (TSL-SRT), is proposed in this paper. In TSL-SRT, new EEG samples are considered as the target domain and original samples as the source domain. The target features can be obtained by projecting the target tensor to the source feature space to ensure that all features are in the same domain. Furthermore, to solve the problem of dimension explosion caused by TSL-SRT, a redundant EEG features screening algorithm is adopted to eliminate the redundant features, and achieves 77.8%, 73.2% and 75.3% accuracy on three BCI datasets. By visualizing the spatial basic matrix of the feature space, it can be seen that TSL-SRT is effective in extracting the features of active brain regions in the BCI task and it can extract the multi-domain features of different subjects in the same domain simultaneously, which provides a new method for the tensor analysis of EEG.

Keywords: Decomposition; EEG; Feature transfer; Tensor subspace learning; Tucker.