Introduction: Pedicle screws are the primary method of vertebral fixation in scoliosis surgery, but there are lingering concerns over potential malposition. The rates of pedicle screw malposition in pediatric spine surgery vary from 10% to 21%. Malpositioned screws can lead to potentially catastrophic neurological, vascular, and visceral complications. Pedicle screw positioning in patients with neuromuscular scoliosis is challenging due to a combination of large curves, complex pelvic anatomy, and osteopenia. This study aimed to determine the rate of pedicle screw malposition, associated complications, and subsequent revision from screws placed with the assistance of machine vision navigation technology in patients with neuromuscular scoliosis undergoing posterior instrumentation and fusion.
Method: A retrospective analysis of the records of patients with neuromuscular scoliosis who underwent thoracolumbar pedicle screw insertion with the assistance of machine-vision image guidance navigation was performed. Screws were inserted by either a staff surgeon, orthopaedic fellow, or orthopaedic resident. Post-operative ultra-low dose CT scans were used to assess pedicle screw accuracy. The Gertzbein classification was used to grade any pedicle breaches (grade 0, no breach; grade 1, <2 mm; grade 2, 2-4 mm; grade 3, >4 mm). A screw was deemed accurate if no breach was identified (grade 0).
Results: 25 patients were included in the analysis, with a mean age of 13.6 years (range 11 to 18 years; 13/25 (52.0%) were female. The average pre-operative supine Cobb angle was 90.0 degrees (48-120 degrees). A total of 687 screws from 25 patients were analyzed (402 thoracic, 241 lumbosacral, 44 S2 alar-iliac (S2AI) screws). Surgical trainees (fellows and orthopaedic residents) inserted 46.6% (320/687) of screws with 98.8% (4/320) accuracy. The overall accuracy of pedicle screw insertion was 98.0% (Grade 0, no breach). All 13 breaches that occurred in the thoracic and lumbar screws were Grade 1. Of the 44 S2AI screws placed, one screw had a Grade 3 breach (2.3%) noted on intra-operative radiographs following rod placement and correction. This screw was subsequently revised. None of the breaches resulted in neuromonitoring changes, vessel, or visceral injuries.
Conclusion: Machine vision navigation technology combined with careful free-hand pedicle screw insertion techniques demonstrated high levels of pedicle screw insertion accuracy, even in patients with challenging anatomy.
Keywords: Gertzbein classification; Machine vision navigation; Neuromuscular scoliosis; Pedicle screw accuracy; Screw malposition.
© 2024. The Author(s), under exclusive licence to Scoliosis Research Society.