Photon-counting detector (PCD)-CT allows for reconstruction of virtual non-iodine (VNI) images from contrast-enhanced datasets. This study assesses the diagnostic performance of aortic valve calcification scoring (AVCS) derived from VNI datasets generated with a 1st generation clinical dual-source PCD-CT. AVCS was evaluated in 123 patients (statistical analysis only comprising patients with aortic valve calcifications [n = 56; 63.2 ± 11.6 years]), who underwent contrast enhanced electrocardiogram-gated (either prospective or retrospective or both) cardiac CT on a clinical PCD system. Patient data was reconstructed at 70 keV employing a VNI reconstruction algorithm. True non-contrast (TNC) scans at 70 keV without quantum iterative reconstruction served as reference in all individuals. Subgroup analysis was performed in 17 patients who received both, prospectively and retrospectively gated contrast enhanced scans (n = 8 with aortic valve calcifications). VNI images with prospective/retrospective gating had an overall sensitivity of 69.2%/56.0%, specificity of 100%/100%, accuracy of 85.4%/81.0%, positive predictive value of 100%/100%, and a negative predictive value of 78.2%/75.0%. VNI images with retrospective gating achieved similar results. For both gating approaches, AVCSVNI showed high correlation (r = 0.983, P < 0.001 for prospective; r = 0.986, P < 0.001 for retrospective) with AVCSTNC. Subgroup analyses demonstrated excellent intra-individual correlation between different acquisition modes (r = 0.986, P < 0.001). Thus, VNI images derived from cardiac PCD-CT allow for excellent diagnostic performance in the assessment of AVCS, suggesting potential for the omission of true non-contrast scans in the clinical workup of patients with aortic calcifications.
© 2024. The Author(s).